Inspection of Photovoltaic Power Plant Using Multicopter

Kazuhiko Ichihashi, Chief Technician
General Technical Center,
Hokkaido Electrical Safety Services Foundation, Japan
Contents

I. Current state of photovoltaic power plants operating in Japan
II. Inspection method using multicopter
III. Examples of inspection findings
IV. Summary
I. Current state of photovoltaic power plants operating in Japan
Accumulated capacity of photovoltaic power plants by region
(Regional breakdown of total amount of electricity generated by existing photovoltaic power plants)

Source: “All About Renewable Energy” website by Agency for Natural Resources and Energy, Japan
2MW-class photovoltaic power plant

Issue to be resolved:

Needs to inspect many panels

Requires substantial labor and time.
II. Inspection method using multicopter
Overview of multicopter inspection

- A multicopter carrying an infrared camera flies at 50 – 80 m altitude above the premises of the power plant to take infrared photographs or video.
Flight of multicopter

- Fully automated flight

All the flight processes, from takeoff to landing, are fully automated to let the multicopter fly required routes predefined on a PC map.

The multicopter receives GPS signals every minute to verify its position while performing posture control by using its IMU (inertial measurement unit) and main controller to keep flying at the predefined altitude and speed.
Advantage of automatic flight

- Problem in manually-controlled flight

 The multicopter becomes less and less visible when it flies farther away from the operator. As a result, it becomes difficult to maintain consistent altitude, speed and flight course.

 Automatic flight enables the multicopter to:

 Fly over the vast premises stably and consistently.
III. Examples of inspection findings
III. Examples of inspection findings

Panoramic photograph taken by multicopter from 150m altitude

Forum Internationnal Fisuel – Séoul / Corée du Sud – 04 et 05 Novembre 2015
Fisuel Internationnal Forum – Seoul / Korea – 04th & 05th of November, 2015
Case 1: Hot spots made by shadows of weeds
Case 2: Two-degree temperature difference detected
Case 3: Temperature difference caused by non-performing cluster
IV. Summary
IV. Summary

- Effectiveness of diagnoses/inspection
 Effective outcomes have been obtained and experience accumulated steadily from the infrared diagnostic imaging using multicopters.

- Need to conduct diagnoses/inspection
 The power plants need diagnoses/inspection because they operate under severe environment exposed to snow in winter.
 Diagnoses/inspection should be conducted periodically, to enable early detection of deterioration, malfunction and other troubles.

- Expansivity/versatility
 This method can potentially be applied to a wide range of business areas, not only to photovoltaic power plants. Currently its applicability is being tested and put into practice accordingly.
Practice of the method
Hokkaido Electrical Safety Services Foundation has defined conditions and requirements and established strict rules concerning use of multicopters and power-operated helicopters, and is practicing them to ensure safe flight.

Flight experience
As of today our multicopter has flown about 120 times including test/familiarization flights, and there has been no fall accident so far.

Future issues/tasks
- Prepare appropriate flight conditions under winter environment
- Monitor the latest trend in safety measures, regulations on operators, etc.

We will continue to make further validation of the method and practice it accordingly to ensure safe operation.
THANK YOU

MERCI - 감사합니다